2
Probably you can recognize it as the equation of a circle with radius r = 1 and center at the origin, (0,0) The general equation of the circle of radius r and center at (h,k) is (x −h)2 (y −k)2 = r2 Answer link By using Pythagoras you would end up with the equation given where the 4 is in fact r^2 To obtain the plot points manipulate the equation as below Given" "x^2y^2=r^2" ">" "x^2y^2 =4 Subtract x^2 from both sides giving " "y^2=4x^2 Take the square root of both sides " "y=sqrt(4x^2) Now write it as " "y=sqrt(4x^2) '~~~~~ Calculate and
Plot x^2+y^2+z^2=1 in matlab
Plot x^2+y^2+z^2=1 in matlab-Graph x^2=y^2z^2 WolframAlpha Area of a circle?Fsurf (f, 4 4 4 4) Note that this will work if you have access to th Symbolic Math Toolbox If you dont have it, the answer from KSSV will always work

Surfaces Part 2
X 2 y 2 z 2 − 2 y − 2 x 1 = 0 All equations of the form ax^ {2}bxc=0 can be solved using the quadratic formula \frac {b±\sqrt {b^ {2}4ac}} {2a} The quadratic formula gives two solutions, one when ± is addition and one when it is subtractionIf one of the variables x, y or z is missing from the equation of a surface, then the surface is a cylinder Note When you are dealing with surfaces, it is important to recognize that an equation like x2 y2 = 1 represents a cylinder and not a circle The trace of the cylinder x 2 y = 1 in the xyplane is the circle with equations x2 y2Sin (x)cos (y)=05 2x−3y=1 cos (x^2)=y (x−3) (x3)=y^2 y=x^2 If you don't include an equals sign, it will assume you mean " =0 " It has not been well tested, so have fun with it, but don't trust it If it gives you problems, let me know Note it may take a few seconds to finish, because it has to do lots of calculations
Algebra Graph x^2y^2=1 x2 y2 = 1 x 2 y 2 = 1 This is the form of a circle Use this form to determine the center and radius of the circle (x−h)2 (y−k)2 = r2 ( x h) 2 ( y k) 2 = r 2 Match the values in this circle to those of the standard form The variable r r represents the radius of the circle, h h represents the xoffset from the origin, and k k represents the yoffset from origin x3y4z = 0 First we rearrange the equation of the surface into the form f(x,y,z)=0 x^22z^2 = y^2 x^2 y^2 2z^2 = 0 And so we have our function f(x,y,z) = x^2 y^2 2z^2 In order to find the normal at any particular point in vector space we use the Del, or gradient operator grad f(x,y,z) = (partial f)/(partial x) hat(i) (partial f)/(partial y) hat(j) (partial f)/(partial z #x^2y^2=16# Note that we can rewrite this equation as #(x0)^2(y0)^2 = 4^2# This is in the standard form #(xh)^2(yk)^2 = r^2# of a circle with centre #(h, k) = (0, 0)# and radius #r = 4# So this is a circle of radius #4# centred at the origin graph{x^2y^2 = 16 10, 10,
Plot x^2+y^2+z^2=1 in matlabのギャラリー
各画像をクリックすると、ダウンロードまたは拡大表示できます
![]() | ![]() | |
![]() | ![]() | |
![]() | ![]() | |
0 件のコメント:
コメントを投稿